Fuel Cells for Distributed Power

Dennis Witmer

University of Alaska Fairbanks
Arctic Energy Technology Development
Laboratory
DOE Distributed Energy Road Show, Anchorage,
December 11-12, 2003

Outline

- #Arctic Energy Technology Development Laboratory at UAF
- **R&D** and Alternative Technologies
- #Fuel cells
- **#Wind**
- **Solar** in Alaska
- **#**Geothermal
- **#Conclusions**

Arctic Energy Technology Development Laboratory

- **#**Created by a Congressional Earmark
- #Funded through DOE, NETL in Fossil Energy
 - △Allow research in both traditional Fossil Energy areas as well as remote electrical systems
- Money flows to UAF, but industry participation is encouraged

Request for Proposals

- #Proposals in Two Areas, Fossil and Remote Energy
- #Attracted a total of 150+ pre-proposals in 3 proposal calls
 - Oil, gas and coal
 - ☑EOR, CO2 Sequestration, Hydrates, Gas pipeline, coal bed methane, coal combustion, environmental issues
 - Remote Electrical
 - Wind, Fuel Cells, Small Hydro, Thermoelectric, Hybrid systems

AETDL Structure

- #Independent structure to allow funding of projects in any area of the University
 - ✓ INE, SME, GI, AG, UAA
- **#**Office Staffed by:
 - **△**DOE--Brent Sheets
 - **△**UAF--Dennis Witmer
 - △SAIC--Charles Thomas

Alaskan Electrical Energy Conference

- #First held in Fairbanks, September 2002
 - △300 attendees, 100+ papers
 - Attended by

 - **⊠**University and NL researchers

 - **区**Equipment suppliers
 - **⊠**Village Residents
- Second conference to be held in Talketna, April 27-29, 2004

The R&D Process

- **#**A new idea
- **#Laboratory Bench top**
 - □ Does the physics work?
- **#Laboratory** breadboard
 - Systems evaluation

The R&D process

- **#**Prototype
 - System packaging (alpha unit)
- **#**Initial Field testing
 - Cost
- #Pre-commercial units
 - Reliability
- **#Commercial units in niche markets**
 - Cost reduction
- ****** Mass production
 - Incremental improvement

The NASA R&D Process

NASA Technology Readiness Level

- △ 1) Basic Principles observed and reported
- 2) Technology concept formulated
- 3) Analytical and experimental proof of concept
- 4) Component and/or breadboard verification in laboratory environment
- Component and/or breadboard verification in a relevant environment
- 7) System prototype demonstrated in a flight environment
- △8) Actual system completed and "flight qualified" through test and demonstration
- △9) Actual system "flight proven" on operation flight

What is an alternative technology?

- Conventional technologies are the ones we use every day

 - □ Grid generated electricity
 - Batteries
 - △ Boilers
- ****** Alternative technology is anything else

Why are alternatives not the conventional technology?

- Cost
 - ☑Most efficient technology is not necessarily the most cost effective technology
- Reliability
 - Longevity
 - Reparability
- - New technologies could be developed to become conventional technology

What are drivers to new technology?

- **#**Environmental Issues
 - □ Global Warming
 - Pollution
- **#Potential rising cost of fossil energy**
- **#Cost reduction**

Efficiency

- **#**A measurement of how well a device converts the energy of a fuel into useful work.
- #Higher efficiency means lower fuel costs
- #Higher efficiency often comes at higher capital cost
- The highest efficiency device may often not be the most commonly available technology

What is a fuel cell?

- **#**A device that converts the chemical energy in a fuel directly to electrical energy.
- Requires fuel flow and oxygen flow, electrodes, and an electrolyte
- #Half cell reactions

$$\triangle H_2 --> 2H^+ + 2e^-$$

$$\bigcirc O_2 + 4^{e-} \longrightarrow 2 O^{+2}$$

Fuel cell basics

Parts of a fuel cell stack

- **#Electrodes**
 - site of electrochemical reaction
- **#**Electrolyte
 - △Allows transfer of ions between anode and cathode
- **#Electrical Conductors**
 - Allows transfer of electrons to external circuit

Advertised Advantages

- #Few moving parts (in the stack)
- **#Clean** (when operating on hydrogen)
- **#**Efficient (at low power)
- **#Cost effective (in mass production)**
- ****Reliable (projected)**

Possible disadvantages

- **#**Susceptible to impurity contamination
 - Electrode poisoning
 - Conductor corrosion
- **#**Air flow requires blower or compressor
- **#**Hydrogen management
- **#Cost**

Parts of a fuel cell system

- #Fuel cell stack
- **#**Air handling device
- #Fuel handling device
- #Fuel conversion device
- **#**Heat management system
- **#DC** to AC converter (inverter)
- **#Control** system

Electrical issues

- #Electricity needs to be generated and consumed simultaneously
- #Electrical loads vary with time
- **#** Electrical systems must load follow
- #Fuel cells operating on hydrocarbon fuels must use batteries or be grid connected for maximum efficiency

Fuel conversion

- #Fuel cells use hydrogen as fuel
- Pure hydrogen is not found in abundance in nature
 - Energy storage vs. fuel
- **Total system efficiency must count conversion of water or hydrocarbon to hydrogen
- **#**A hydrogen infrastructure does exist, but hydrogen is still significantly more expensive than other hydrocarbon fuels.

Reformers

- ******A device to convert a hydrocarbon fuel to a hydrogen rich gas stream
- **#**Uses part of the energy of the fuel for the conversion process
- **#**Operate at high temperature (800C)
- **#Produce CO2 as byproduct**
- #Efficiency of 35 to 80%

Fuel Cells

- #Five types
 - Alkaline
 - Phosphoric Acid

Phosphoric Acid

- **Largest installation in world at Anchorage Post Office
- **Stack degradation within a few years**
- Capital cost of \$3000/kw, life of 5 years gives capital cost of 7.8 cents / kW-hr
- ★ Net efficiency of about 35%

Solid Oxide Fuel Cells

- **Westinghouse Successfully demonstrated 200 kW units for 16,000 hours on Natural Gas
- #Building factory, will deliver 200 kW units @\$4500 per kW, starting in 2006 (???)
- **#Working on 5kW system with FCT**
- #Efficiency of 50% net electrical on NG
- **Status:** Pre commercial
 - ✓ Issue: Cost of manufacturing

Results to date with 5 kW FCT SOFC

- **#**Unit delivered 10 months late
- **Started on August 1, 2003**
- #Producing 4.2 kW DC power, >50%
- **#**Operating continuously since startup, except for one scheduled outage
- *Best performance from small scale fuel cell in our program

Issues with FCT SOFC

- ****Needs N2-H2 mixed gas for startup**
- ****Needs electrical power for start up**
- **#**Operates on Natural Gas
- **#**Unit is physically large and heavy
- **#**Still very expensive
- **#**Units are still not commercially available

Molten Carbonate

- #Technology in initial field demonstration phase (early 1990's)
- #Projected to be more cost effective than other FC
 - Low Cost materials
- **Still** a few years away from commercialization
- **#**Status: Pre commercial

State of the PEM

- **#**Technology for transportation
 - Only fuel cell technology with high energy density
- #Field demonstrations not succeeding

 - Efficiency issues
 - □ Fuel reformer issues
 - Cost!!!
- ★ Status: Prototype

Fuel Cell System Efficiency (at UAF)

- **#**Stack Efficiency
- ****Balance of Plant**
- **#**Reformer
- **#Inverter**
- **#Batteries**

PEM Efficiency

- **#**Stack Efficiency 60%
- **#BOP Efficiency** 85%
- **#**Reformer Efficiency 35-65%
- Batteries 90%
- ★ Overall efficiency < 25%
 </p>
- **Conclusion:** PEM fuel cells in distributed configuration is less efficient than grid!

Fuel Cell summary

- #Fuel cells are real
 - Physics and chemistry are based on real science
- #Despite decades of R&D, fuel cells are not yet ready for prime time
- **Niche markets for fuel cells will likely develop before mass markets

